Probability distribution
Inverse-chi-squared
Probability density function
Cumulative distribution function
Parameters
ν
>
0
{\displaystyle \nu >0\!}
Support
x
∈
(
0
,
∞
)
{\displaystyle x\in (0,\infty )\!}
PDF
2
−
ν
/
2
Γ
(
ν
/
2
)
x
−
ν
/
2
−
1
e
−
1
/
(
2
x
)
{\displaystyle {\frac {2^{-\nu /2}}{\Gamma (\nu /2)}}\,x^{-\nu /2-1}e^{-1/(2x)}\!}
CDF
Γ
(
ν
2
,
1
2
x
)
/
Γ
(
ν
2
)
{\displaystyle \Gamma \!\left({\frac {\nu }{2}},{\frac {1}{2x}}\right){\bigg /}\,\Gamma \!\left({\frac {\nu }{2}}\right)\!}
Mean
1
ν
−
2
{\displaystyle {\frac {1}{\nu -2}}\!}
for
ν
>
2
{\displaystyle \nu >2\!}
Median
≈
1
ν
(
1
−
2
9
ν
)
3
{\displaystyle \approx {\dfrac {1}{\nu {\bigg (}1-{\dfrac {2}{9\nu }}{\bigg )}^{3}}}}
Mode
1
ν
+
2
{\displaystyle {\frac {1}{\nu +2}}\!}
Variance
2
(
ν
−
2
)
2
(
ν
−
4
)
{\displaystyle {\frac {2}{(\nu -2)^{2}(\nu -4)}}\!}
for
ν
>
4
{\displaystyle \nu >4\!}
Skewness
4
ν
−
6
2
(
ν
−
4
)
{\displaystyle {\frac {4}{\nu -6}}{\sqrt {2(\nu -4)}}\!}
for
ν
>
6
{\displaystyle \nu >6\!}
Excess kurtosis
12
(
5
ν
−
22
)
(
ν
−
6
)
(
ν
−
8
)
{\displaystyle {\frac {12(5\nu -22)}{(\nu -6)(\nu -8)}}\!}
for
ν
>
8
{\displaystyle \nu >8\!}
Entropy
ν
2
+
ln
(
ν
2
Γ
(
ν
2
)
)
{\displaystyle {\frac {\nu }{2}}\!+\!\ln \!\left({\frac {\nu }{2}}\Gamma \!\left({\frac {\nu }{2}}\right)\right)}
−
(
1
+
ν
2
)
ψ
(
ν
2
)
{\displaystyle \!-\!\left(1\!+\!{\frac {\nu }{2}}\right)\psi \!\left({\frac {\nu }{2}}\right)}
MGF
2
Γ
(
ν
2
)
(
−
t
2
i
)
ν
4
K
ν
2
(
−
2
t
)
{\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-t}{2i}}\right)^{\!\!{\frac {\nu }{4}}}K_{\frac {\nu }{2}}\!\left({\sqrt {-2t}}\right)}
; does not exist as real valued function CF
2
Γ
(
ν
2
)
(
−
i
t
2
)
ν
4
K
ν
2
(
−
2
i
t
)
{\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-it}{2}}\right)^{\!\!{\frac {\nu }{4}}}K_{\frac {\nu }{2}}\!\left({\sqrt {-2it}}\right)}
In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution ) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution . It is used in Bayesian inference as conjugate prior for the variance of the normal distribution .
Definition
The inverse chi-squared distribution (or inverted-chi-square distribution ) is the probability distribution of a random variable whose multiplicative inverse (reciprocal) has a chi-squared distribution .
If
X
{\displaystyle X}
follows a chi-squared distribution with
ν
{\displaystyle \nu }
degrees of freedom then
1
/
X
{\displaystyle 1/X}
follows the inverse chi-squared distribution with
ν
{\displaystyle \nu }
degrees of freedom.
The probability density function of the inverse chi-squared distribution is given by
f
(
x
;
ν
)
=
2
−
ν
/
2
Γ
(
ν
/
2
)
x
−
ν
/
2
−
1
e
−
1
/
(
2
x
)
{\displaystyle f(x;\nu )={\frac {2^{-\nu /2}}{\Gamma (\nu /2)}}\,x^{-\nu /2-1}e^{-1/(2x)}}
In the above
x
>
0
{\displaystyle x>0}
and
ν
{\displaystyle \nu }
is the degrees of freedom parameter. Further,
Γ
{\displaystyle \Gamma }
is the gamma function .
The inverse chi-squared distribution is a special case of the inverse-gamma distribution .
with shape parameter
α
=
ν
2
{\displaystyle \alpha ={\frac {\nu }{2}}}
and scale parameter
β
=
1
2
{\displaystyle \beta ={\frac {1}{2}}}
.
chi-squared : If
X
∼
χ
2
(
ν
)
{\displaystyle X\thicksim \chi ^{2}(\nu )}
and
Y
=
1
X
{\displaystyle Y={\frac {1}{X}}}
, then
Y
∼
Inv-
χ
2
(
ν
)
{\displaystyle Y\thicksim {\text{Inv-}}\chi ^{2}(\nu )}
scaled-inverse chi-squared : If
X
∼
Scale-inv-
χ
2
(
ν
,
1
/
ν
)
{\displaystyle X\thicksim {\text{Scale-inv-}}\chi ^{2}(\nu ,1/\nu )\,}
, then
X
∼
inv-
χ
2
(
ν
)
{\displaystyle X\thicksim {\text{inv-}}\chi ^{2}(\nu )}
Inverse gamma with
α
=
ν
2
{\displaystyle \alpha ={\frac {\nu }{2}}}
and
β
=
1
2
{\displaystyle \beta ={\frac {1}{2}}}
Inverse chi-squared distribution is a special case of type 5 Pearson distribution
See also
References
^ a b Bernardo, J.M.; Smith, A.F.M. (1993) Bayesian Theory , Wiley (pages 119, 431) ISBN 0-471-49464-X
^ Gelman, Andrew; et al. (2014). "Normal data with a conjugate prior distribution". Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. pp. 67– 68. ISBN 978-1-4398-4095-5 .
External links
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families