Relevance vector machine

In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. A greedy optimisation procedure and thus fast version were subsequently developed. The RVM has an identical functional form to the support vector machine, but provides probabilistic classification.

It is actually equivalent to a Gaussian process model with covariance function:

where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector , and are the input vectors of the training set.

Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based post-optimizations). However RVMs use an expectation maximization (EM)-like learning method and are therefore at risk of local minima. This is unlike the standard sequential minimal optimization (SMO)-based algorithms employed by SVMs, which are guaranteed to find a global optimum (of the convex problem).

The relevance vector machine was patented in the United States by Microsoft (patent expired September 4, 2019).

See also

References

  1. ^ Tipping, Michael E. (2001). "Sparse Bayesian Learning and the Relevance Vector Machine". Journal of Machine Learning Research. 1: 211–244.
  2. ^ Tipping, Michael; Faul, Anita (2003). "Fast Marginal Likelihood Maximisation for Sparse Bayesian Models". Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics: 276–283. Retrieved 21 November 2024.
  3. ^ Faul, Anita; Tipping, Michael (2001). "Analysis of Sparse Bayesian Learning" (PDF). Advances in Neural Information Processing Systems. Retrieved 21 November 2024.
  4. ^ Candela, Joaquin Quiñonero (2004). "Sparse Probabilistic Linear Models and the RVM". Learning with Uncertainty - Gaussian Processes and Relevance Vector Machines (PDF) (Ph.D.). Technical University of Denmark. Retrieved April 22, 2016.
  5. ^ US 6633857, Michael E. Tipping, "Relevance vector machine" 

Software